Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Pharm ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574292

RESUMO

The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.

2.
J Dent ; 143: 104876, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367826

RESUMO

OBJECTIVE: This study evaluated the effect of administration of trans-resveratrol-containing orodispersible tablets on the protein composition of the AEP and on blood plasma trans-resveratrol concentrations. METHODS: Ten volunteers participated in two crossover double-blind phases. In each phase, after dental prophylaxis, they received a trans-resveratrol (15 mg) orodispersible tablet, or a placebo tablet (without actives). The AEP formed after 120 min was collected with electrode filter papers soaked in 3 % citric acid. Blood samples were collected 30, 45, 60 and 120 min after the use of the tablet. After protein extraction, AEP samples were analyzed by shotgun labelfree quantitative proteomics and plasma samples were analyzed by high-performance liquid chromatography (HPLC). RESULTS: Eight hundred and two proteins were identified in the AEP. Among them, 336 and 213 were unique to the trans-resveratrol and control groups, respectively, while 253 were common to both groups. Proteins with important functions in the AEP had increased expression in the trans-resveratroltreated group, such as neutrophil defensins, S100 protein isoforms, lysozyme C, cystatin-D, mucin-7, alphaamylase, albumin, haptoglobin and statherin. Trans-resveratrol was detected in the plasma at all the times evaluated, with the peak at 30 min. CONCLUSIONS: The administration of trans-resveratrol in sublingual orodispersible tablets was effective both to increase the bioavailability of the polyphenol and the expression of antibacterial and acid-resistant proteins in the AEP, which might benefit oral and general health.


Assuntos
Proteínas , Humanos , Película Dentária , Proteínas/análise , Proteínas/metabolismo , Proteínas/farmacologia , Resveratrol/farmacologia , Resveratrol/análise , Resveratrol/metabolismo , Estudos Cross-Over , Método Duplo-Cego
3.
Arch Biochem Biophys ; 751: 109840, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040223

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor that has an abnormal expression of oncogenesis and tumor suppressors and causes dysregulation of various signaling pathways. Thus, novel therapeutic strategies for OS are needed to overcome the resistance of traditional treatments. This study evaluated the cytotoxic and anticancer effects of the association between menadione (MEN) and protocatechuic acid (PCA) in murine OS cells (UMR-106). The concentrations were 3.12 µM of isolated MEN, 500 µM of isolated PCA, and their associations. We performed cell viability assays, morphology modification analysis, cell migration by the wound-healing method, apoptosis by flow cytometry, reactive oxygen species (ROS) production, gene expression of NOX by RT-qPCR, and degradation of MMP-2 and 9 by zymography. Our results showed that the association of MEN+PCA was more effective in OS cells than the compounds alone. The association decreased cell viability, delayed cell migration, and decreased the expression of NOX-2 and ROS. In addition, the MEN+PCA association induced a slight increase in the apoptotic process. In summary, the association can enhance the compound's antitumor effects and establish a higher selectivity for tumor cells, possibly caused by significant mitochondrial damage and antioxidant properties.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Animais , Camundongos , Vitamina K 3/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Combinação de Medicamentos , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Proliferação de Células
4.
Gels ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38131928

RESUMO

Inflammation is a natural protective reaction of the body against endogenous and exogenous damage, such as tissue injuries, trauma, and infections. Thus, when the response is adequate, inflammation becomes a defense mechanism to repair damaged tissue, whereas when the response is inadequate and persistent, the increase in inflammatory cells, cytosines, and chymosins impair tissue regeneration and promote a response harmful to the organism. One example is chronic tissue inflammation, in which a simple lesion can progress to ulcers and even necrosis. In this situation, the anti-inflammatory medications available in therapy are not always effective. For this reason, the search for new treatments, developed from medicinal plants, has increased. In this direction, the plants Agave sisalana (sisal) and Punica granatum (pomegranate) are rich in saponins, which are secondary metabolites known for their therapeutic properties, including anti-inflammatory effects. Although Brazil is the world's leading sisal producer, approximately 95% of the leaves are discarded after fiber extraction. Similarly, pomegranate peel waste is abundant in Brazil. To address the need for safe and effective anti-inflammatory treatments, this study aimed to create a topical mucoadhesive gel containing a combination of sisal (RS) and pomegranate residue (PR) extracts. In vitro experiments examined isolated and combined extracts, as well as the resulting formulation, focusing on (1) a phytochemical analysis (total saponin content); (2) cytotoxicity (MTT assay); and (3) a pharmacological assessment of anti-inflammatory activity (phagocytosis, macrophage spreading, and membrane stability). The results revealed saponin concentrations in grams per 100 g of dry extract as follows: SR-29.91 ± 0.33, PR-15.83 ± 0.93, association (A)-22.99 ± 0.01, base gel (G1)-0.00 ± 0.00, and association gel (G2)-0.52 ± 0.05. In MTT tests for isolated extracts, cytotoxicity values (µg/mL) were 3757.00 for SR and 2064.91 for PR. Conversely, A and G2 exhibited no cytotoxicity, with increased cell viability over time. All three anti-inflammatory tests confirmed the presence of this activity in SR, PR, and A. Notably, G2 demonstrated an anti-inflammatory effect comparable to dexamethasone. In conclusion, the gel containing SR and PR (i.e., A) holds promise as a novel herbal anti-inflammatory treatment. Its development could yield economic, social, and environmental benefits by utilizing discarded materials in Brazil.

5.
Molecules ; 28(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836734

RESUMO

Amyloid aggregates arise from either the partial or complete loss of the native protein structure or the inability of proteins to attain their native conformation. These aggregates have been linked to several diseases, including Alzheimer's, Parkinson's, and lysozyme amyloidosis. A comprehensive dataset was recently reported, demonstrating the critical role of the protein's surrounding environment in amyloid formation. In this study, we investigated the formation of lysozyme amyloid fibrils induced by sodium dodecyl sulfate (SDS) and the effect of solvents in the medium. Experimental data obtained through fluorescence spectroscopy revealed a notable lag phase in amyloid formation when acetone solution was present. This finding suggested that the presence of acetone in the reaction medium created an unfavorable microenvironment for amyloid fibril formation and impeded the organization of the denatured protein into the fibril form. The in silico data provided insights into the molecular mechanism of the interaction between acetone molecules and the lysozyme protofibril, once acetone presented the best experimental results. It was observed that the lysozyme protofibril became highly unstable in the presence of acetone, leading to the complete loss of its ß-sheet conformation and resulting in an open structure. Furthermore, the solvation layer of the protofibril in acetone solution was significantly reduced compared to that in other solvents, resulting in fewer hydrogen bonds. Consequently, the presence of acetone facilitated the exposure of the hydrophobic portion of the protofibril, precluding the amyloid fibril formation. In summary, our study underscores the pivotal role the surrounding environment plays in influencing amyloid formation.


Assuntos
Amiloide , Muramidase , Dodecilsulfato de Sódio/química , Amiloide/química , Muramidase/química , Solventes/química , Acetona
6.
J Photochem Photobiol B ; 242: 112693, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947916

RESUMO

Due to its primordial function as a drug carrier, human serum albumin (HSA) is extensively studied regarding its binding affinity with developing drugs. Förster resonance energy transfer (FRET) is frequently applied as a spectroscopic molecular ruler to measure the distance between the binding site and the ligand. In this work, we have shown that most of the published results that use the FRET technique to estimate the distance from ligands to the binding sites do not corroborate the crystallography data. By comparing the binding affinity of dansyl-proline with HSA and ovotransferrin, we demonstrated that FRET explains the quenching provoked by the interaction of ligands in albumin. So, why does the distance calculation via FRET not corroborate the crystallography data? We have shown that this inconsistency is related to the fact that a one-to-one relationship between donor and acceptor is not present in most experiments. Hence, the quenching efficiency used for calculating energy transfer depends on distance and binding constant, which is inconsistent with the correct application of FRET as a molecular ruler. We have also shown that the indiscriminate attribution of 2/3 to the relative orientation of transition dipoles of the acceptor and donor (κ2) generates inconsistencies. We proposed corrections based on the experimental equilibrium constant and theoretical orientation of transition dipoles to correct the FRET results.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Albumina Sérica Humana , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , Albumina Sérica Humana/química , Triptofano/metabolismo , Ligantes , Sítios de Ligação , Ligação Proteica
7.
J Photochem Photobiol B ; 234: 112542, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35973286

RESUMO

Human serum albumin (HSA) is the primary drug carrier in the blood plasma. Here, I aimed to show that two ligands can be accommodated simultaneously in the binding site-I of HSA. To do so, I studied the interaction inside the protein among site-I ligands of HSA via fluorescence resonance energy transfer (FRET), synchronous fluorescence, red edge excitation shift (REES), and induced circular dichroism (ICD). Warfarin (WAR), coumarin-153 (C153), 6-(p-toluidino)-2-naphthalenesulfonic acid sodium salt (TNS), dansylglycine (DGY), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) were enrolled in the investigation. I found that WAR can transfer energy to C153 only in the presence of the protein. In addition, the presence of WAR at site-I altered the protein microenvironment felt by C153. The alteration was detected by measuring the synchronous fluorescence, REES, and ICD in C153. The findings were validated by measuring the energy transfer from TNS to DCM and the alteration in synchronous fluorescence and REES. FRET was not observed using WAR as donor and DGY as acceptor. The result is consistent, as DGY is a site-II ligand at a higher WAR distance. In all studied cases, the effects were only observed in the presence of HSA. In conclusion, the protein acted as a scaffold approximating the ligands. These findings prove that more than one ligand can simultaneously be complex at site-I of HSA.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Corantes Fluorescentes , Humanos , Ligantes , Ligação Proteica , Albumina Sérica/metabolismo , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
8.
J Pharm Biomed Anal ; 219: 114975, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926329

RESUMO

Turnera ulmifolia L. is used in folk medicine and it is known to have anti-hyperglycemic effect on the organism in order to reduce complications in diabetic patients. Glycation process is directly related to oxidative stress, acting as an important endogenous source, inducing the production of free radicals, and thus increasing the production of reactive oxygen species. The encapsulation technology on natural compounds can minimize and even mitigate the risk of loss of biological activity in order to maintain their activities against oxidative stress and glycation. The present study aimed to evaluate the antiglycation and antioxidant activities of T. ulmifolia extract before and after encapsulation and cytotoxicity of the crude extract. This study presents important information about the biological activities, highlighting antioxidant and antiglycation potential and no cytotoxicity of Turnera ulmifolia crude extract, a species of genus Turnera that has been poorly studied. T. ulmifolia crude extract presented flavonoids as main active compounds. The results showed a promising activity in scavenging free and peroxyl radicals, chelating iron ions and inhibiting BSA glycation. In addition, this study showed the possible encapsulation of bioactive compounds using maltodextrin as wall material.


Assuntos
Turnera , Antioxidantes/farmacologia , Humanos , Medicina Tradicional , Estresse Oxidativo , Extratos Vegetais/farmacologia
9.
Chem Biol Interact ; 361: 109962, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523312

RESUMO

Phenolic phytochemicals are a group of organic compounds with potent antioxidant features but can also act as powerful pro-oxidants. These characteristics are effective in reducing metastatic potential in cancer cells, and this effect has been associated with reactive oxygen species (ROS). Methyl vanillate (MV) and its dimer, methyl divanillate (DMV), are potent antioxidants. In the present study, we investigated the effects of MV and DMV on breast cancer cell lines MCF-7 and MDA-MB-231 and compared the results using the non-tumor cell line HB4a. Our results indicated that the compounds performed a pro-oxidant action, increasing the generation of ROS. DMV decreased the viability cell, showing a higher apoptotic effect and inhibition of proliferation than MV on both cell lines, with significant differences between groups (p < 0.05). Some modulation of NOX4, NOX5, and DUOX were observed, but the results did not correlate with the intracellular production of ROS. The dimer showed more effectivity and pro-oxidant effect than MV, impacting cell line MCF-7 in higher extension than MDA-MB-231. In conclusion, and corroborating with reported works, the dimerization of natural phenolic compounds was associated with improved beneficial biological effects as a potential cytotoxic agent to tumor cells.


Assuntos
Neoplasias da Mama , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Dimerização , Feminino , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Ácido Vanílico/análogos & derivados
10.
J Integr Med ; 20(2): 153-162, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34996732

RESUMO

OBJECTIVE: The present study investigated antiglycation and antioxidant activities of crude dry extract and saponin fraction of Tribulus terrestris. It also developed a method of microencapsulation and evaluated antiglycation and antioxidant activities of crude dry extract and saponin fraction before and after microcapsule release. METHODS: Antiglycation activity was determined by relative electrophoretic mobility (REM), free amino groups and inhibition of advanced glycation end-product (AGE) formation. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion-reducing antioxidant power (FRAP), nitric oxide (NO) and thiobarbituric acid reactive species (TBARS) tests. Microcapsules were prepared using maltodextrin as wall material and freeze-drying as encapsulation technique. Morphological characterization of microcapsules was evaluated by scanning electron microscopy, and encapsulation efficiency and microcapsule release were determined by total saponins released. Antiglycation and antioxidant assays were performed using crude dry extract and saponin fraction of T. terrestris before and after release. RESULTS: Saponin fraction showed an increase of 32.8% total saponins. High-performance liquid chromatography-mass spectrometry analysis showed the presence of saponins in the obtained fraction. Antiglycation evaluation by REM demonstrated that samples before and after release presented antiglycation activity similar to bovine serum albumin treated with aminoguanidine. Additionally, samples inhibited AGE formation, highlighting treatment with saponin fraction after release (89.89%). Antioxidant tests demonstrated antioxidant activity of the samples. Crude dry extract before encapsulation presented the highest activities in DPPH (92.00%) and TBARS (32.49%) assays. Saponin fraction before encapsulation in FRAP test (499 µmol Trolox equivalent per gram of dry sample) and NO test (15.13 µmol nitrite formed per gram of extract) presented the highest activities. CONCLUSION: This study presented antiglycation activity of crude dry extract and saponin fraction of T. terrestris, besides it demonstrated promising antioxidant properties. It also showed that the encapsulation method was efficient and maintained biological activity of bioactive compounds after microcapsule release. These results provide information for further studies on antidiabetic and antiaging potential, and data for new herbal medicine and food supplement formulations containing microcapsules with crude extract and/or saponin fraction of T. terrestris.


Assuntos
Saponinas , Tribulus , Antioxidantes/química , Cápsulas , Misturas Complexas , Produtos Finais de Glicação Avançada , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saponinas/análise , Saponinas/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico
11.
Tissue Cell ; 74: 101705, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864499

RESUMO

Osteosarcoma is the most common type of bone cancer, and metastasis is widespread decreasing the survival rate. The search for new therapeutic strategies has increased for phytochemicals due to their potential as antioxidants and anticancer properties. Thus, we evaluated the caffeic acid phenethyl ester (CAPE) and caffeic acid's (CA) anticancer properties on UMR-106 murine osteosarcoma cells. The IC25 and IC50 were 1.3 and 2.7 µM for CAPE and 91.0 and 120.0 µM for CA, respectively. This study shows the potential anticancer properties of CAPE and highlights how a phenethyl ester component addition can improve the pharmacological potency in relation to its precursor CA. Our results showed that CAPE was more efficient and selective in reducing the viability of tumor cells compared to the control osteoblasts (MC3T3-E1) (p < 0.05). In addition, CAPE was 44-fold (IC25) and 70-fold (IC50) more cytotoxic than CA. CAPE also decreased ROS generation and cell migration. In summary, CAPE was more selective for tumor cells, preserving normal ones, suggesting its potential role as an anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Ácidos Cafeicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Álcool Feniletílico/análogos & derivados , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Álcool Feniletílico/farmacologia
12.
J Photochem Photobiol B ; 216: 112130, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33561688

RESUMO

Ultraviolet B (UVB) light corresponds to 5% of ultraviolet radiation. It is more genotoxic and mutagenic than UVA and causes direct and indirect cellular damage through the generation of reactive oxygen species (ROS). Even after radiation, ROS generation may continue through activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme. Long-term exposure can progress to premature skin aging and photocarcinogenesis. To prevent damage that is caused by UVB radiation, several studies have focused on the topical administration of compounds that have antioxidant properties. 2-Acetylphenothiazine (ML171) is a potent and selective inhibitor of NOX1. The present study investigated the antioxidant potential and photoprotective ability of ML171 in UVB-irradiated L929 fibroblasts. ML171 had considerable antioxidant activity in both the DPPH• and xanthine/luminol/xanthine oxidase assays. ML171 did not induce cytotoxicity in L929 fibroblasts and increased the viability of UVB-irradiated cells. ML171 also inhibited ROS production, the enzymatic activity of NOX, depolarization of the mitochondrial membrane, and DNA damage. Additionally, ML171 protected cell membrane integrity and induced fibroblast migration. These results suggest that the incorporation of ML171 in topical administration systems may be a promising strategy to mitigate UVB-induced oxidative damage in L929 fibroblasts.


Assuntos
Antioxidantes/química , Fibroblastos/efeitos da radiação , Oxidantes Fotoquímicos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenotiazinas/química , Antioxidantes/farmacologia , Apoptose/efeitos da radiação , Linhagem Celular , Dano ao DNA/efeitos da radiação , Fibroblastos/citologia , Humanos , Peroxidação de Lipídeos/efeitos da radiação , NADPH Oxidases/metabolismo , Oxirredução , Fenotiazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele , Raios Ultravioleta
13.
RSC Adv ; 11(29): 17880-17890, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35480205

RESUMO

NADPH oxidases are pharmacological targets for the treatment of inflammation-based diseases. This work presents the synthesis and study of a caffeic acid/phthalimide hybrid compound (C2) as a potential inhibitor of NADPH oxidases. Throughout the study, we have compared compound C2 with its precursor caffeic acid (C1). The redox properties were compared using three different antioxidant methodologies and showed that C2 was slightly less effective than C1, a well-established and robust antioxidant. However, C2 was three-fold more effective than albumin (used as a model protein). This chemical feature was decisive for the higher efficiency of C2 as an inhibitor of the release of superoxide anions by stimulated neutrophils and enzymatic activity of cell-free NADPH oxidase. Docking simulation studies were performed using the crystal structure of the recombinant dehydrogenase domain of the isoform NOX5 of C. stagnale, which retains the FAD cofactor (PDB: 5O0X). Considering that C2 could bind at the FAD redox site of NOX5, studies were conducted by comparing the interactions and binding energies of C1 and C2. The binding energies were -50.30 (C1) and -74.88 (C2) (kJ mol-1), which is in agreement with the higher efficacy of the latter as an NADPH oxidase inhibitor. In conclusion, incorporating the phthalimide moiety into caffeic acid was decisive for its effectiveness as an NADPH oxidase inhibitor.

14.
ACS Biomater Sci Eng ; 6(8): 4539-4550, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-33455170

RESUMO

Plant-derived compounds incite applications virtually on every biomedical field due to the expedient antioxidant, anti-inflammatory and antimicrobial properties in conjunction with a natural character. Here, quercetin (QCT), a flavonoid with therapeutic potentials relevant to the oral environment, was encapsulated within metal-organic frameworks (MOFs) to address the concept of on-demand release of phytochemicals at the biointerface. We verified the applicability of a microporous MOF (ZIF-8) as a controlled-release system for QCT, as well as investigated the incorporation of QCT@ZIF-8 microparticles into a dental adhesive resin for desirable therapeutic capabilities at the tooth-restoration interface. QCT was encapsulated within the frameworks through a water-based, one-step synthetic process. The resulting QCT@ZIF-8 microparticles were characterized with respect to chemical composition, crystal structure, thermal behavior, micromorphology, and release profile under acidic and physiological conditions. A model dental adhesive formulation was enriched with the bioactive microparticles; both the degree of conversion (DC) of methacrylic double bonds and the polymer thermal behavior were accounted for. The results confirm that crystalline QCT@ZIF-8 microparticles with attractive loading capacities, submicron sizes, high thermal stability and responsiveness to environmental pH change were successfully manufactured. The concentration of QCT@ZIF-8 in the resin system was a key factor to maintain an optimal DC plateau and rate of polymerization. Essentially, one-step encapsulation of QCT in biocompatible ZIF-8 matrices can be easily achieved, and QCT@ZIF-8 microparticles proved as smart platforms to carry bioactive compounds with potential use to prevent microbial and enzymatic degradation of hard tissues and extracellular matrix components.


Assuntos
Estruturas Metalorgânicas , Polímeros , Antibacterianos , Flavonoides , Polimerização
15.
Front Cell Infect Microbiol ; 10: 592022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643928

RESUMO

Paracoccidioidomycosis is a systemic fungal disease, considered endemic in Latin America. Its etiological agents, fungi of the Paracoccidioides complex, have restricted geographic habitat, conidia as infecting form, and thermo-dimorphic characteristics. Polymorphonuclear neutrophils (PMNs) are responsible for an important defense response against fungus, releasing Neutrophil Extracellular Traps (NETs), which can wrap and destroy the yeasts. However, it has been described that some pathogens are able to evade from these DNA structures by releasing DNase as an escape mechanism. As different NETs patterns have been identified in PMNs cultures challenged with different isolates of Paracoccidioides brasiliensis, the general objective of this study was to identify if different patterns of NETs released by human PMNs challenged with Pb18 (virulent) and Pb265 (avirulent) isolates would be correlated with fungal ability to produce a DNase-like protein. To this end, PMNs from healthy subjects were isolated and challenged in vitro with both fungal isolates. The production, release, and conformation of NETs in response to the fungi were evaluated by Confocal Microscopy, Scanning Microscopy, and NETs Quantification. The identification of fungal DNase production was assessed by DNase TEST Agar, and the relative gene expression for hypothetical proteins was investigated by RT-qPCR, whose genes had been identified in the fungal genome in the GenBank (PADG_11161 and PADG_08285). It was possible to verify the NETs release by PMNs, showing different NETs formation when in contact with different isolates of the fungus. The Pb18 isolate induced the release of looser, larger, and more looking like degraded NETs compared to the Pb265 isolate, which induced the release of denser and more compact NETs. DNase TEST Agar identified the production of a DNase-like protein, showing that only Pb18 showed the capacity to degrade DNA in these plates. Besides that, we were able to identify that both PADG_08528 and PADG_11161 genes were more expressed during interaction with neutrophil by the virulent isolate, being PADG_08528 highly expressed in these cultures, demonstrating that this gene could have a greater contribution to the production of the protein. Thus, we identified that the virulent isolate is inducing more scattered and loose NETs, probably by releasing a DNase-like protein. This factor could be an important escape mechanism used by the fungus to escape the NETs action.


Assuntos
Armadilhas Extracelulares , Paracoccidioides , Paracoccidioidomicose , Desoxirribonucleases , Humanos , Neutrófilos , Paracoccidioides/genética
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 208: 243-254, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30342339

RESUMO

Due to the high sensitivity to alterations in microenvironment polarity of macromolecules, pyrene and its derivatives have long been applied in biosciences. Human serum albumin (HSA), besides its numerous physiological functions, is the main responsible by transport of endogenous and exogenous compounds in the circulatory system. Here, a comprehensive study was carry out to understand the interaction between HSA and the pyrene derivative 1-pyrenesulfonic acid (PMS), which showed a singular behaviour when bound to this protein. The complexation of PMS with HSA was studied by steady state, time-resolved and anisotropy fluorescence, induction of circular dichroism (ICD) and molecular docking. The fluorescence quenching of PMS by HSA was abnormal, being stronger at lower concentration of the quencher. Similar behaviour was obtained by measuring the ICD signal and fluorescence lifetime of PMS complexed in HSA. The displacement of PMS by site-specific drugs showed that this probe occupied both sites, but with higher affinity for site II. The movement of PMS between these main binding sites was responsible by the abnormal effect. Using the holo (PDB: ID 1A06) and apo (PDB: ID 1E7A) HSA structures, the experimental results were corroborated by molecular docking simulation. The abnormal spectroscopic behaviour of PMS is related to its binding in different regions in the protein. The movement of PMS into the protein can be traced by alteration in the spectroscopic signals. These findings bring a new point of view about the use of fluorescence quenching to characterize the interaction between albumin and ligands.


Assuntos
Conalbumina/metabolismo , Pirenos/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica Humana/metabolismo , Ácidos Sulfônicos/metabolismo , Animais , Anisotropia , Sítios de Ligação , Bovinos , Dicroísmo Circular , Fluorescência , Humanos , Simulação de Acoplamento Molecular , Pirenos/química , Ácidos Sulfônicos/química , Termodinâmica , Fatores de Tempo , Triptofano/análogos & derivados , Triptofano/química
17.
RSC Adv ; 9(35): 19983-19992, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35514705

RESUMO

Vanillic acid is a widely used food additive (flavouring agent, JECFA number: 959) with many reported beneficial biological effects. The same is true for its ester derivative (methyl vanillate, JECFA number: 159). Based on the increasing evidence that diapocynin, the dimer of apocynin (NADPH oxidase inhibitor), has some improved pharmacological properties compared to its monomer, here the dimer of methyl vanillate (MV), i.e., methyl divanillate (dimer of methyl vanillate, DMV) was synthesized and studied in the context of its redox properties and binding affinity with human serum albumin (HSA). We found that the antioxidant potency of DMV was significantly increased compared to MV. In this regard, the reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical by DMV was 30-fold more effective compared to MV. Ferric ion reduction was 4-fold higher and peroxyl radical reduction was 2.7-fold higher. The interaction with HSA was significantly improved (Stern-Vomer constants, 3.8 × 105 mol-1 L and 2.3 × 104 mol-1 L, for DMV and MV, respectively). The complexation between DMV and HSA was also evidenced by induced circular dichroism (ICD) signal generation in the former due to its fixation in the asymmetric protein pocket. Density-functional calculations (TD-DFT) showed that the ICD spectrum was related to a DMV conformation bearing a dihedral angle of approximately -60°. Similar dihedral angles were obtained in the lowest and most populated DMV cluster poses obtained by molecular docking simulations. The computational studies and experimental displacement studies revealed that DMV binds preferentially at site I. In conclusion, besides being a powerful antioxidant, DMV is also a strong ligand of HSA. This is the first study on the chemical and biophysical properties of DMV, a compound with potential beneficial biological effects.

18.
Int J Mol Sci ; 19(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241420

RESUMO

Human serum albumin (HSA) is a target for reactive oxygen species (ROS), and alterations of its physiological functions caused by oxidation is a current issue. In this work, the amino-acid residues Trp-214 and Lys-199, which are located at site I of HSA, were experimentally and computationally oxidized, and the effect on the binding constant with phenylbutazone was measured. HSA was submitted to two mild oxidizing reagents, taurine monochloramine (Tau-NHCl) and taurine dibromamine (Tau-NBr2). The oxidation of Trp-214 provoked spectroscopic alterations in the protein which were consistent with the formation of N'-formylkynurenine. It was found that the oxidation of HSA by Tau-NBr2, but not by Tau-NHCl, provoked a significant increase in the association constant with phenylbutazone. The alterations of Trp-214 and Lys-199 were modeled and simulated by changing these residues using the putative oxidation products. Based on the Amber score function, the interaction energy was measured, and it showed that, while native HSA presented an interaction energy of -21.3 kJ/mol, HSA with Trp-214 altered to N'-formylkynurenine resulted in an energy of -28.4 kJ/mol, and HSA with Lys-199 altered to its carbonylated form resulted in an energy of -33.9 kJ/mol. In summary, these experimental and theoretical findings show that oxidative alterations of amino-acid residues at site I of HSA affect its binding efficacy.


Assuntos
Lisina/química , Modelos Teóricos , Fenilbutazona/metabolismo , Albumina Sérica Humana/metabolismo , Triptofano/química , Sítios de Ligação , Humanos , Oxirredução , Fenilbutazona/química , Ligação Proteica , Albumina Sérica Humana/química
19.
Chirality ; 30(9): 1049-1053, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29969152

RESUMO

The electronic circular dichroism (ECD) spectra of naproxen enantiomers were studied as a function of solvents using experimental (circular dichroism) and theoretical (time-dependent density functional theory) approaches. The (R)- and (S)-naproxen enantiomers presented an unusual inversion in their ECD signals in the presence of ethanol and water when compared with polar aprotic solvents such as acetonitrile. From a practical point of view, these findings deserve great attention because these solvents are widely used for high-performance liquid chromatography analysis in quality control of chiral pharmaceutical drugs. This is particularly relevant to naproxen because the (S)-naproxen has anti-inflammatory properties, whereas (R)-naproxen is hepatotoxic. A time-dependent density functional theory computer simulation was conducted to investigate the signal inversion using the solvation model based on density, a reparameterization of polarized continuum model. Electronic circular dichroism signals of conformers were calculated by computer simulation and their contribution to the combined spectra obtained according to Boltzmann weighting. It was found that the experimentally observed ECD signal inversion can be associated with the minor or major contribution of different conformers of naproxen.

20.
Food Funct ; 8(7): 2500-2511, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28640317

RESUMO

Helicobacter pylori infection is marked by intense production of reactive oxygen species (ROS) through the activation of neutrophils that are constantly attracted to the infected gastric mucosa. Here, gallic acid and its alkyl esters were evaluated as compounds able to act as antimicrobial agents and inhibitors of ROS released by H. pylori-activated neutrophils simultaneously. We found that the higher hydrophobicity caused by esterification of gallic acid led to a significant increase in its ability as a cytotoxic agent against H. pylori, a scavenger of ROS and an inhibitor of NADPH oxidase in neutrophils. Octyl gallate, a widely used food additive, showed the highest antimicrobial activity against H. pylori, with a minimum inhibitory concentration (MIC) value of 125 µg mL-1, whereas gallic acid had a MIC value higher than 1000 µg mL-1. The production of superoxide anion radicals was almost 100% abolished by the addition of 10 µM (2.82 µg mL-1) octyl gallate, whereas gallic acid inhibited around 20%. A similar tendency was also found when measuring the production of hypochlorous acid. The protective effect of the esters was cytochemically confirmed. In conclusion, this study showed that hydrophobicity is a crucial factor to obtain a significant anti-ROS and anti-H. pylori activity. Finally, it highlights octyl gallate, a food additive widely used in the food industry, as a promising molecule in the treatment of H. pylori infection.


Assuntos
Aditivos Alimentares/farmacologia , Ácido Gálico/análogos & derivados , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácido Gálico/farmacologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/enzimologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/crescimento & desenvolvimento , Humanos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...